2003 Run: Physics Goals

RHIC Retreat Montauk Point

Sam Aronson Brookhaven National Laboratory March 5, 2002

Summary

- In the future* the program needs will be dominated by the highest available ∫ L dt
 - Spin
 - High p_T
 - Charm and heavier flavors
 - Multi-strange states
- * The future has already started!
- In the near term experiments will also ask for numerous different running conditions at modest | L dt
- The best chance of meeting these needs will require significant accelerator development time
 - Average L, lifetime, diamond size, up-time, etc.
 - dt (calendar time) is hard to come by; Lavg & availability are the way to maximize the physics output
- A key issue is balancing development with near term running

Contents

- 2001/2002 data set and expected physics results
 - Which goals will be met and which missed?
- The RHIC Beam Use Proposal (RBUP) Process
 - Catch 22
- The Long Range Plan Strawman
- Assumptions about running conditions
 - Are these realistic?
- Physics goals and stretch goals for the 2003 run
- Summary

2001/2002 data set, expected results

- Au-Au:40 to 80 µb⁻¹ delivered, □ half "observed"
 - p-p similar relative to expectations
- PHENIX: μSouth, STAR: 1st EMCal piece,
 PHOBOS: 2nd arm, BRAHMS: fwd. spectrometer @ full pwr.
- Data in hand to meet (more or less) the soft physics goals set forth in the 2001 RBUPs
 - Global hadronic signals
 - Light vector mesons
 - Moderate p_T
- High p_T, rare processes will not be accessible at RBUP Levels. In hand:
 - Few hundreds of J/ψ
 - Hadron p_T □ 10 GeV/c
 - Not quite comparable reach in the p-p comparison data
- QM03 should be another success for RHIC!

ZDC counts and PHENIX triggers/day

Brookhaven Science Associates
U.S. Department of Energy

RHIC Beam Use Proposal Process

- RBUPs will be due this summer, after much analysis of the existing data
 - ALD, with PAC advice, will set the program
- This meeting will hopefully generate realistic expectations of accelerator performance → guidance for writing the RBUPs
- Catch 22: realistic physics goals from the experiments cannot be given at this stage
 - Recent data not yet analyzed
 - No agreed-upon RHIC performance expectations
- We can, however, look at
 - Where we are in achieving previously agreed physics goals and
 - What it will take to achieve them in a timely way

From the RHI white paper for the Long Range Plan: A Strawman run program for RHIC's first years of operation*

Year	Run Plan	Physics	
2001-2002	long Au + Au at 200 GeV/A X commission & run pp ✓ Au + Au at low E: 20 GeV/A ✓	J/ψ, high p _t , multistrange Comparison & spin run One day at injection energy	
2003	d + Au at 200GeV/A (7 wks) scan lighter beams (3 x 5 w) polarized pp (10 wks) ???	Comparison with Au+Au Scan system volume Spin	
2004	Au + Au (10 wks) polarized pp (10 wks) p(d)+Au (12 wks)	High p _t , observe Y, multistrange baryon slopes Comparison & spin Comparison, structure fns.	
2005	p + nucleus (22 wks) polarized pp (10 wks)	Comparison, Drell-Yan studies Spin	
2006	long Au + Au lighter ion	Open charm	

*Annotated by me

Brookhaven Science Associates U.S. Department of Energy

Modifications to the Strawman

- To stay on this path, 2003 should deliver
 - The long Au-Au run
 - d-Au comparison data
 - A species scan (O? Si? Cu? ...)
 - First real p-p run
- Of course, the RBUPs are not required to hew to this line and may make physics cases for other conditions, e.g.,
 - Runs at specific energies
 - General energy scan
 - Other?
- Issues about this...

Issues about this view

- Polarized proton running
 - will we be able to do good spin physics in 2003?
 - must we have the p-p comparison running anyway?
- Running vs. Development time
 - Priority of improving average L and availability
- Efficient running for different configurations
 - competing needs of high integrated L and survey data
 - how much time will go into changing over?

Assumptions: 2003 running conditions

- Based on 01/02 experience (+ some optimism) and assuming the '03 Pres. budget
 - 22 weeks of physics running
 - IR $\sigma_{diamond} = 22cm$
 - Average luminosity in a store = design luminosity (though perhaps not achieved as planned)
 - 40% Machine X Detector availability
 - \Rightarrow ~50 μ b⁻¹/week observed in Au-Au @ \sqrt{s} = 200GeV/A
 - \Rightarrow ~10nb⁻¹/week " d-Au "
 - \Rightarrow ~2pb⁻¹/week " p-p "
- These are \sim equal nucleon-nucleon integrated per week \Rightarrow equal reach (e.g., in p_T) \Leftrightarrow \sim equal running time

2003 running conditions

- Example run plan :
 - 300μb⁻¹ Au-Au observed (6 weeks)
 - d-Au of equal reach (6 weeks + 2-3 weeks' comm.)
 - $10pb^{-1}$ of $\vec{p} \vec{p}$ (5 weeks + 1-2 weeks' comm.)
- This looks like it fits!
 - No species or energy scans
 - Maybe room for ~1-day special runs between major blocks
- But: assumes the target running conditions throughout the run. This may be ×2 too optimistic.

Goals and stretch goals for 2003

- If the learning/relearning curves do amount to a factor 2 down from this example run plan we probably won't get all of
 - High-statistics Au-Au, d-Au and p-p
 - Scans and special runs
- Either one reduces one's statistical sample requirements

-or-

spends the necessary machine development time to get better $\int L \, dt / week$ and higher availability

I believe high priority should be put on the latter

Back to my "Issues" slide

- Polarized proton running
 - Will we be able to do good spin physics in 2003?
 - If so, it's a high priority
 - Can we learn this before cryo operation starts?
 - Must we have the p-p comparison running anyway?
- Running vs. Development time
 - Priority of improving average L and availability
 - Need to define a production/development schedule that's both efficient & sufficient for experiments and accelerators
- Efficient running for different configurations
 - Competing needs of high integrated L and survey data
 - How much time will go into changing over?
 - Can we look forward to robust configurations and quick changes between configurations in 2003?

Summary

- In the future* the program needs will be dominated by the highest available ∫ L dt
 - Spin
 - High p_⊤
 - Charm and heavier flavors
 - Multi-strange states
- * The future has already started!
- In the near term experiments will also ask for numerous different running conditions at modest | L dt
- The best chance of meeting these needs will require significant accelerator development time
 - Average L, lifetime, diamond size, up-time, etc.
 - dt (calendar time) is hard to come by; Lavg & availability are the way to maximize the physics output
- A key issue is balancing development with near term running

Additional slides

Bunch intensity, luminosity

 $L_{peak} = f_{REV}MN_aN_b/(4\pi\sigma_a^*\sigma_b^*)$

■ M = # bunches = 60, N = ions/bunch, $\sigma^* = RMS$ beam size @ IR, $f_{REV} = 78kHz$

	N	σ*(μ m)
р	10 ¹¹	160
d	10 ¹¹	200
Au	10 ⁹	220

	Peak Luminosity (cm ⁻² sec ⁻¹)	Avg. Luminosity (cm ⁻² sec ⁻¹)	Minbias event rate @ avg. Luminosity
Au-Au	8x10 ²⁶	2x10 ²⁶	1.4kHz
р-р	1.5x10 ³¹	1x10 ³¹	400kHz
d-Au	8.5x10 ²⁸	3.5x10 ²⁸	120kHz

[There are some guesses in here, regarding the d-beam lifetime, factors of 2 for bunch intensities, etc.] Since d-Au multiplicities will be higher by factors of a few relative to p-p, the data load is again fairly constant across different species.

NB: the nucleon-nucleon

NB: the nucleon-nucleon luminosities are ~the same for the 3 cases!